Monitoring the Extent of CO₂ Plume and Pressure Perturbation

Project Number 1022403

William Harbert ORISE-NETL

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

NETL Research Presentations and Posters

TUESDAY, AUGUST 18, 2015

- 2:15 PM Resource Assessment Angela Goodman
- 5:10 PM Catalytic Conversion of CO₂ to Industrial Chemicals Doug Kauffman
- 6:00 p.m. Poster Session (CORE R&D, NRAP, and RCSPs)
 - 1. Dave Blaushild Perfluorocarbon Tracer (PFT) Analysis to Support the South West Partnership,
 - 2. Liwei Zhang Numerical simulation of pressure and CO2 saturation above the fractured seal as a result of CO2 injection: implications for monitoring network design
 - 3. NRAP, EDX, and NATCARB Grant Bromhal, Bob Dilmore, Kelly Rose, Maneesh Sharma

WEDNESDAY, AUGUST 19, 2015

- <u>1:15 PM Monitoring the Extent of CO₂ Plume and Pressure Perturbation Bill Harbert</u>
- 2:05 PM Reservoir and Seal Performance Dustin Crandall
- 3:45 PM Monitoring Groundwater Impacts Christina Lopano
- 5:30 p.m. Poster Session (SubTER, NRAP, and EFRCs)
 - 1. Kelly Rose Evaluating Induced Seismicity with Geoscience Computing & Big Data A multi-variate examination of the cause(s) of increasing induced seismicity events
 - 2. NRAP, EDX, and NATCARB Grant Bromhal, Bob Dilmore, Kelly Rose, Maneesh Sharma
 - 3. John Tudek-EFRC
 - 4. Sean Sanguinito NETL CO2 SCREEN)

THURSDAY, AUGUST 20, 2015

11:25 AM Shales as Seals and Unconventional Reservoirs for CO₂-Robert Dilmore

We use two approaches to all problems.

Inverse Problem

For both problems geophysical data, reference core and geophysical well logs are required.

Every project should be well bounded by work <u>on</u> <u>both problems</u>.

Presentation Outline

- Core based petrophysical measurements, analysis and interpretation.
- Reflection seismic based reservoir monitoring and surveillance.
- Microseismic monitoring and surveillance.
- Electromagnetic methods.

Benefit to the Program

This activity supports industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.

Develops and validates technologies to ensure 99 percent storage permanence.

Develops technologies to improve reservoir storage efficiency while ensuring containment effectiveness.

Will aid in the development of Best Practice Manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization; public outreach; well management activities; and risk analysis and simulation.

Surveillance Technologies being considered:

Storage Reservoir

Atomic Dielectric Resonance **Triaxial Gravity Gradiometry**

Broad-Band Seismicity

USDW

Controlled Source or Magnetotellurics Dual-Moment Time Domain EM

Database of previous rock physics based measurements constructed and being placed on EDX.

Proposal is a coherent approach that builds on previous research and complements on-going efforts at the COREFLOW and µCT Scanner Laboratories at NETL and aids geophysical reservoir monitoring.

Project will produce timely, cost-effective benefits given the close collaboration and support of the CO_2 partnerships. 5

Project Overview: Goals and Objectives

• Monitoring the Extent of CO₂ Plume and Pressure Perturbation

The objective of this task is to assess NETL core capabilities relative to gaps in monitoring tools and strategies that can be applied costeffectively to quantify CO_2 and/or pressure plumes. Effective monitoring techniques for CO₂ storage areas must determine the vertical and lateral extent of CO₂ migration and verify that the plume remains within the intended reservoir. Monitoring must also determine the areal extent of the pressure perturbation caused by CO₂ injection because prestressed faults (if present) in these areas may be activated by pore pressure (induced seismicity). A suite increasing of complementary geophysical techniques are being developed to address the goal of 99% storage by detecting stored CO₂ at depth and determining the effect of rising pore pressure on the geomechanical properties of the storage formation and caprock.

Technical Status

- Core based petrophysical measurements, analysis and interpretation.
- Reflection seismic based reservoir monitoring and surveillance.
- Micro seismic monitoring and surveillance.
- Electromagnetic methods.

Brief introduction to CO₂ sequestration in deep saline aquifers

Adopted from Friedmann, 2005

capacity may reach thousands of MT (Megatons)

400

Presentation Outline

- Core based petrophysical measurements, analysis and interpretation.
- Reflection seismic based reservoir monitoring and surveillance.
- Microseismic monitoring and surveillance.
- Electromagnetic methods.

Experimental Setup

Ultrasonic velocity Measurements (Dynamic)-NER AutoLab 1500

www.NER.com

Velocity Commander and Acquisition Viewer

Commander			
Data: 1058371424	Channel: axdcdt	Vel: 3.2	
File Mode Waves			Quit
Confining Pressure (MPa) 30.00		Oscilloscope Control	
		1.0	*/ DIVISION
0,00 20,00 40,00	60,00	5.0e-6	Sec/Division
		1.00E-05	Delay
Pore Upstream (MPa) 20.00		1	Stack
		Configu	re Scope
0,00 20,00 40,00	60,00		
Out-1 Distance DODT LID (a.)		Reinitia.	lize Scope
HX1AI PISTON UCUI HG (MM) 0.000		Contuno	1
		Capture	1
0.000 2.000 4.000	6.000		
Pore Downstream (MPa)		Pulse	Control
0.00		Pulser Freerun	
0.00 20.00 40.00	60.00		
	- 1 - 61		
Ramp lime 585 lime Left			
Send Hold			
Sampling Interval	_		
1m =			
Current CO			
Collect a/d channels	S		
Monitor			
DUMP PRESSURES			

The Information in a Rock's Velocity-Pressure Curve

- 1. High pressure limiting velocity is a function of porosity
- The amount of velocity change with pressure indicates the amount of soft, crack-like pore space
- The range of the greatest pressure sensitivity indicates the shape or aspect ratios of the crack-like pore space

Stanford Rock Physics Laboratory - Gary Mavko 43

This slide is from Dr. Gary Mavko, Stanford Rock Physics Laboratory

This slide courtesy Dr. Alan Mur, IKON Science

Pores (>130 um²) and Orientations

Pore Orientations, Area Weighted (um^2)

Framework composition Fluid composition Compliant porosity topology Isometric porosity topology Fracture topology

Large connected pore network shown in white and unconnected pores in red. (Volume size $1.54 \times 1.40 \times 1.12 \text{ mm}$)

This slide courtesy Dr. Alan Mur, IKON Science

LOCAL THICKNESS: COOLER COLORS ARE COMPLIANT POROSITY (4X SAMPLE)

- We can separate the volume of high and low aspect ratio pores to quantify compliant and stiff porosity
- Results can be compared/confirmed by thickness mapping

MACRO SCALE PORE ORIENTATIONS SEM

Low Porosity Limestone WEST

Red – best fit ellipsoid Blue – major axis Green – minor axis

Using three mutually perpendicular, ~40x80cm SEM montages, we described a large number of pores (>10,000 pores per plane) using GIS and image processing.

Effective Pressure Cycling Results – Permeability

Rock physics model comparison with NER AutoLab measurements modeling applied to data

- Laboratory calibrated calculation of Reuss, Voigt, RVH, and Hasin-Shtrikman (HS+) bounds.
- Direct measurement of P- and S- Velocity and Permeability dependence on effective pressure.
- Constrain accurately the effect of pore pressure and compliant porosity variation with respect to lithology within target volumes.
- Lame parameters, including Bulk Modulus and Shear Modulus variation with effective pressure.
- Normalized Bulk Modulus (K_{dry}/K₀) with respect to φ with various values of normalized pore stiffness (K_f/K₀).

Presentation Outline

- Core based petrophysical measurements, analysis and interpretation.
- Reflection seismic based reservoir monitoring and surveillance.
- Microseismic monitoring and surveillance.
- Electromagnetic methods.

Seismic Variables

 ρ = Density = mass/volume

K = Bulk Modulus = resistance to uniform compression

 μ = Shear Modulus= resistance to shearing

 $V_p = P$ wave Velocity

 V_s = S wave Velocity

Assumes isotropy – uniform in all directions

This slide courtesy Dr. Alan Mur, IKON Science

Amplitude Difference 3D Seismic

4D-VSP Comparison

VSP Pseudo CMP Amplitude Differences

((Amp1-Amp2)^2)/((Amp1+Amp2)^2

AVO: AMPLITUDE VARIATION WITH OFFSET

When an incoming compressional P-Wave reaches an impedance (Velocity*Density) interface, it splits into four components:

(Zoeppritz 1919, Aki and Richards 1980, Hilterman 1983, Mavko, Mukerji et al. 1998)

AVO ANALYSIS OF PRESTACK SEISMIC DATA

- Using Shuey's 3-term approximation to the Zoeppritz model, we fit a curve to the amplitudes at increasing angles on prestack seismic gathers around an injection well.
- The coefficients of the fitting curve are the Intercept (A), Gradient (B), and Curvature (C). (these coefficients are also physically defined).

$R(\theta)=A(0) + B \sin^2\theta + C(\tan^2\theta - \sin^2\theta)$

From: Rocky Roden, Chief Consulting Geoscientist, Seismic Micro-Technology, Inc.

Biot-Gassmann fluid replacement equation in Lamé terms

Approximation to Biot-Gassmann Equation in Lamé terms

Assuming $\mu_{drv} = \mu_{sat}$ substitute $\Delta \lambda = \lambda_{sat} - \lambda_{drv}$

$$\Rightarrow \Delta \lambda \approx \frac{\lambda_{\text{fluid}}}{\phi} \left(1 - \frac{K_{\text{dry}}^2}{K_{\text{solid}}^2} \right)$$

Where $\Delta\lambda$ is the "fluid term" related to $\rho\Delta\lambda$ "pore space modulus" (from Hedlin, Russell, Hilterman and Lines 2003)

Observations:

- Low $\Delta\lambda$ sensitivity for high modulus (K_{solid}) rock e.g. Carbonates
- λ can never be negative as λ_{fluid} , ϕ , K_{dry}^2 and K_{solid}^2 are always positive

FLUID SATURATION IN λρ-μρ Coordinates

- Lamé moduli of rigidity μ and "incompressibility" λ allow the fundamental parameterization of seismic waves used to extract information about rocks in the Earth.
- The introduction of fluids into the carbonate cores causes a shift in $\lambda \rho$, $\mu \rho$ remains independent of fluid saturation.
- $\lambda \rho$ - $\mu \rho$ is dependent on framework characteristics, including porosity, Higher porosity results in lower values for both $\lambda \rho$ and $\mu \rho$.

VTI / HTI Anisotropy

Ant-tracking based 3D reflection volume

Ant-tracking based 3D reflection volume interpretation

Integrated geomechanical reservoir modeling

This slide courtesy Dr. Alan Mur, IKON Science

Aki and Richards 3 term AVO curve fit

AVO anomaly Described by Purcell et al (2011)

Fluid and pressure variation used in AVO modeling

37

Ma and Morozov, TLE, 2010 (b) A Pore pressure B p. S. CO₂ saturation This combination of 50 100 depth and pressure is so rare that we lack enough well control to model it properly. 200 -250 50 50 100 150 10 150 250 50 -00 100.0-150 50.0 -100 -50 100 -50 100 150 -200 50.0 -100.0 50.0 100.0 150.0 -50.0 100 -50.0 -100.0 -150.0 -200.0 -250.0

Helene Hafslund Veire, Hilde Grude Borgos, and Martin Landrø, Geophysics 2006

Overall Project Workflow

Summary of AVO Methodology

From Dan Hampson, Hampson-Russell

Inversion Based Modeling

- Create Model
 - Select Wells
 - Correlate each well
 - Extract Wavelet
 - Pick seismic horizons
- Perform Inversion
 - Select Inversion Type and Parameters
 - QC Inversion result at well locations
- Interpret Results
 - Create data slices
 - Create cross plots

Seismic methods

- Complete analysis of existing datasets focusing on gradient intercept and AVO parameter variation.
- Forward model expected pressure and fluid trends using well log data to determine expected trends.
- Analysis of seismic inversion results calibrated with core laboratory measurements

Presentation Outline

- Core based petrophysical measurements, analysis and interpretation.
- Reflection seismic based reservoir monitoring and surveillance.
- Microseismic monitoring and surveillance.
- Electromagnetic methods.

Site details

Motivation

Paper SPE-168647-MS • Paper Title • Erich V. Zorn

Workflow

Hydraulic Diffusivity: The triggering front

r-t plot with points scaled by Es/Ep ratio

Presently completing calculation of Coulomb Yield Stress (CYS) perturbation with time Rozkho (2010)

Variation in b-value with depth

Volumetric b-value fence diagram

Seismogram and frequency spectrum: Pre-frac

Seismogram and frequency spectrum: During hydrofracturing

Shmax Shmin

Overview of slow-slip mechanics

Combine with rock property and stress data to estimate slip and dilation tendencies

Micro seismic methods

- Determination of b-values with depth, time and voxel element.
- Determination of triggering front and propagation of Coulomb yielding stress (CYS).
- Discrimination between "wet" and "dry" micro seismic events (Maxwell et al.,)
- Correlate variation with well log derived properties, 3D seismic, ant tracking and attribute volumes.

Presentation Outline

- Core based petrophysical measurements, analysis and interpretation.
- Reflection seismic based reservoir monitoring and surveillance.
- Microseismic monitoring and surveillance.
- Electromagnetic methods.

Controlled Source Electromagnetics

- Transmitter
 - Grounded Dipole
 - Broadband
 - PRN
 - 64 freq. per 1 Hz
 - High Power
 - 30 kW
- Receivers
 - High Sample Rate
 - Nanosecond timing
 - -140 dB S/N

Atascosa County: Monitoring geometry

Atascosa County : Frac Stg 5 Start

Atascosa County : Frac Stg 5 End

Atascosa County : Frac Stg 5 End & Pumps Off

Accomplishments to Date

- Suitable infrastructure and teaming arrangements established.
- Selected well log, microseismic, and geological data in process of establishment.
- Technology assessment of Triaxial Gravity Gradiometry, Broad-Band Seismicity, Controlled Source or Magnetotellurics, and Dual-Moment Time Domain EM has begun.

Synergy Opportunities

- All workflows and methodologies will be presented to regional Carbon Sequestration Partnerships, field experts and peer reviewed.
- Combination of experimental, core-calibrated geophysical pressure and fluid surveillance with relevant field datasets.
- We are keen to collaborate in the areas of petrophysics, well log interpretation, and advanced seismic analysis and interpretation.

Summary

- Inelastic pressure cycling related changes in Lame properties and permeability appear to be potentially minor in expected reservoir units.
- 3D reflection seismic pre-stack wide offset datasets ideally suited for pressure and fluid monitoring. Seismic attribute spaces developed from those proposed by Landrø (2001) differentiate between fluid and pressure.
- Baseline data is critical to success: Core calibration is important.
- We hope to apply these laboratory activities and proposed workflows to partnership activities. 65

Appendix

Length scales associated with observational methods, structure and physical processes in geological systems.

From DePaolo et al., (2007)

PRESSURE AND TEMPERATURE EFFECTS ON $\lambda \rho$ - $\mu \rho$

- Tested two rhyolite cores, one high and one low porosity
- Varied temperatures between 0 to 80 C
- Increasing Temperature decreases μρ
- Increasing effective pressure primarily increases λρ

Organization Chart

Task 7.0 Monitoring the Extent of CO₂ Plume and Pressure Perturbation (TTT: Rick Hammack)

 Subtask 7.1 Knowledge and Technology Gap Identification (Rick Hammack)

Gantt Chart

• .	Projec For each Ta Sub-subtask	FY15				FY16				FY17				FY18				FY19				
	Start Reflects the date the work	Finish Reflects the date the work																_				
FY15 Carbon Storage (Project Period: 10/01/14 – 09/30/19)	is scheduled to begin	is scheduled for completion	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
6. Energy Data eXchange/National Carbon Sequestration Database and Geographic Information System Geospatial Resources	10/1/2014	9/30/2019	←	M1.15	6.A											M1.18	6.B					\rightarrow
6.1 Energy Data eXchange/National Carbon Sequestration Database and Geographic Information System	10/1/2014	9/30/2019	~																			\rightarrow
7. Monitoring the Extent of CO ₂ Plume and Pressure Perturbation	10/1/2014	9/30/2016	←	M1.15	(7.A	M1.15.7. ♦	B 			\rightarrow	1											ļ
7.1 Knowledge and Technology Gap Identification	10/1/2014	9/30/2016	←						M1 16	→ 8A					M	1.18.8.B						
8. Catalytic Conversion of CO ₂ to Industrial Chemicals	11/15/2014	11/14/2020	~						0							۵ 						\rightarrow
 8.1 Novel Reaction Chemistries and Reactor Development for Scalability Assessments 8.2 Design, Discovery, Synthesis, and Characterization of Novel Catalyst Systems for Catalytic CO₂ 	11/15/2014	11/14/2020	← ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																			\rightarrow
Conversion	11/15/2014	11/14/2020																				
9. Evaluation of CO ₂ Use and Re-Use Strategies	TBD	TBD			 																	
9.1 CO ₂ Use and Re-Use Strategy Evaluation			M1.15.	10.B M1.	15.10.A																	
10. SubTER - Induced Seismicity with Big Data	10/1/2014	3/30/2015	<u> </u>	· · · · · ·				\rightarrow														
10.1 Data Gathering	10/1/2014	3/30/2015	<					\rightarrow														
10.2 Development of Data Mining Techniques	10/1/2014	6/30/2015	.						\rightarrow													
10.3 Data Mining	1/1/2015	9/30/2015		<u> </u>	M1.15.11	A M1.15	11.B															
11. Perfluorocarbon Tracers (PFT) Analysis to Support SW Partnership	10/1/2014	9/30/2016	←							\rightarrow										70		i

Bibliography

- Hammack, Richard, Zorn, E., Harbert, W., Stewart, B., Sharma, S., and Siriwardane, H., 2013, An Evaluation of Zonal Isolation After Hydraulic Fracturing; Results From Horizontal Marcellus Shale Gas Wells at NETL's Greene County Test Site in Southwestern Pennsylvania, SPE 13ERM-P-65-SPE.
- Zorn, Erich V., Richard Hammack, and William Harbert, SPE, 2013, Time Dependent b and D-values, Scalar Hydraulic Diffusivity, and Seismic Energy from Microseismic Analysis in the Marcellus Shale: Connection to Pumping Behavior During Hydraulic Fracturing, SPE, SPE-168647-MS.
- Hammack, Richard W., Harbert, William, Sharma, Shikha, Stewart, Brian W., Capo, Rosemary C., Wall, Andy J., Wells, Arthur, Diehl, Rodney, Blaushild, David, Sams, James, and Veloski, Garret, 2014, An Evaluation of Fracture Growth and Gas/Fluid Migration as Horizontal Marcellus Shale Gas Wells are Hydraulically Fractured in Greene County, Pennsylvania, United States Department of Energy, Office of Fossil Energy, NETL-TRS-3-2014, 80 pp..
- Carter, Kristin M., Schmidt, Katherine, W., Harbert, W., and Parrish, Jay B., 2014, Using geophysical and remote sensing techniques to evaluate deep geologic formations in Indiana County, Pennsylvania, Pennsylvania Geological Survey, Fourth Series, 12 p.
- Rui Zhang, Donald Vasco, Thomas M. Daley, William Harbert, 2015, Characterization of a fracture zone using seismic attributes at the In Salah CO2 storage project, Interpretation, 3, SM37-SM46.
- Wang, Pengyun, Pozzi, M., Small, M., and Harbert, W., 2015, Statistical method for real-time detection of changes in seismic risk at deep-well injection sites, Bulletin of the Seismological Society of America, (accepted and in press).
- Want, Pengyun, Small, M., Harbert, W., and Pozzi, M., 2015, A Bayesian approach for assessing seismic transitions associated with wastewater injections, Bulletin of the Seismological Society of America, (in review).

Acknowledgements

This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.
Thank you

